Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.185
Filtrar
1.
Neotrop Entomol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656591

RESUMO

The use of Meliponini for crop pollination in protected environments is practically non-existent. One of the reasons is the difficulty of acclimatizing Meliponini to the temperature and light conditions inside greenhouses. We investigated how covering materials used in greenhouses, which filter different intensities of ultraviolet (UV) light, affect the foraging behaviors, flight orientation, attraction to walls and ceilings, and mortality of Scaptotrigona cf. postica (Letreille), Frieseomelitta varia (Lepeletier), and Melipona quadrifasciata (Lepeletier). The experiments were conducted in 5.3 m3 arenas covered with four types of plastic films that do not polarize sunlight, with UV transmittance levels ranging from 0.1 to 54%, compared to a transparent glass control. The temperature inside the arenas varied between treatments, from 27 ± 3°C to 31 ± 2°C. All three species collected resources and returned to the colony, regardless of the covering material. However, the proportion of this behavior, the number of bees attracted to the ceiling and wall, and mortality varied among treatments and/or throughout the confinement days for each species. Melipona quadrifasciata and F. varia acclimatized better to the confined environments than S. cf. postica and showed consistent resource collection behavior throughout the confinement days in all tested materials, except for the one that filtered around 90% of UV. In all three species, the mortality gradually decreased throughout the confinement days. The results indicate that the choice of covering material, considering its optical characteristics, can be crucial to ensure greater effectiveness of the pollination services provided by stingless bees in protected systems.

2.
Am J Bot ; 111(4): e16309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584339

RESUMO

PREMISE: Barriers at different reproductive stages contribute to reproductive isolation. Self-incompatibility (SI) systems that prevent self-pollination could also act to control interspecific pollination and contribute to reproductive isolation, preventing hybridization. Here we evaluated whether SI contributes to reproductive isolation among four co-occurring Opuntia species that flower at similar times and may hybridize with each other. METHODS: We assessed whether Opuntia cantabrigiensis, O. robusta, O. streptacantha, and O. tomentosa, were self-compatible and formed hybrid seeds in five manipulation treatments to achieve self-pollination, intraspecific cross-pollination, open pollination (control), interspecific crosses or apomixis, then recorded flowering phenology and synchrony. RESULTS: All species flowered in the spring with a degree of synchrony, so that two pairs of species were predisposed to interspecific pollination (O. cantabrigiensis with O. robusta, O. streptacantha with O. tomentosa). All species had distinct reproductive systems: Opuntia cantabrigiensis is self-incompatible and did not produce hybrid seeds as an interspecific pollen recipient; O. robusta is a dioecious species, which formed a low proportion of hybrid seeds; O. streptacantha and O. tomentosa are self-compatible and produced hybrid seeds. CONCLUSIONS: Opuntia cantabrigiensis had a strong pollen-pistil barrier, likely due to its self-incompatibility. Opuntia robusta, the dioecious species, is an obligate outcrosser and probably partially lost its ability to prevent interspecific pollen germination. Given that the self-compatible species can set hybrid seeds, we conclude that pollen-pistil interaction and high flowering synchrony represent weak barriers; whether reproductive isolation occurs later in their life cycle (e.g., germination or seedling survival) needs to be determined.


Assuntos
Flores , Hibridização Genética , Opuntia , Polinização , Isolamento Reprodutivo , Sementes , Autoincompatibilidade em Angiospermas , Simpatria , Autoincompatibilidade em Angiospermas/fisiologia , Flores/fisiologia , Sementes/fisiologia , Opuntia/fisiologia , Reprodução , Pólen/fisiologia , Especificidade da Espécie , Apomixia/fisiologia
3.
Ecol Evol ; 14(4): e11295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660471

RESUMO

Among flowering plants, self-incompatibility is considered the most efficient system for avoiding self-fertilization. However, many self-incompatible plants have also evolved floral mechanisms to reduce sexual conflict. In China, some studies of Bulbophyllum have been reported to be self-incompatible and no fruit sets. However, we have observed relatively high fruit sets in Bulbophyllum funingense. Therefore, we speculated that if B. funingense is also self-incompatible, and it might present a floral mechanism to avoid sexual conflict. Natural fruit sets, pollinia removal and deposition rates were determined and breeding system was tested in a hand-pollination experiment. The pollination process and visiting frequency of pollinators and their behavior after escape from access were observed and recorded. Floral traits associated with pollination and pollinator size were measured. B. funingense was completely self-incompatible, the fruit sets of cross-pollination in 2 years were all more than 70%, and the natural fruit sets for 2 years were 1.70 ± 4.31% and 6.63 ± 5.29%, respectively. B. funingense did not produce strong odor or nectar, but produced a kind of secretions from its labellum that attracted flies. Calliphora vicina (Calliphoridae) was its only effective pollinator. When C. vicina licked the secretions, they were stuck in the access for a long time. Thus, when they escaped from access, they almost always flew quickly away from the inflorescence removing pollinia most of the times. In B. funingense, a floral mechanism improves pollinia transfer efficiency, reduces pollinia waste, promotes pollination success, reduces the incidence of self-pollination, and avoids sexual conflict to a certain extent.

4.
Ecol Evol ; 14(4): e11284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651164

RESUMO

In heterostylous plants, short-tongued pollinators are often ineffective/inefficient owing to the limitations imposed by a long corolla tube. However, it is unclear how disassortative pollen transfer is achieved in small flowers. We investigated the pollination pattern and floral morph variation by analyzing heterostylous syndrome, pollinator groups, and pollen deposition after a single visitation in two Limonium myrianthum populations with short-corolla-tubular small flowers. The predominant pollinators in the Hutubi population were pollen-seeking short-tongued syrphids, which can only transfer pollen between high-level sexual organs. In the Xishan population, nectar-seeking short-tongued insects were efficient pollinators with symmetrical disassortative pollen transfer between high- and low-level sexual organs, whereas long-tongued pollinators had a low efficiency between high-level sexual organs due to the low contact probability with the stigma of long-styled flowers (L-morph), which no longer offered the same advantage observed in tubular flowers. Asymmetrical disassortative pollination may cause the female fitness of short-styled (S-morph) individuals in the Hutubi and L-morph individuals in the Xishan population to suffer greater selection pressure and exhibit a higher degree of floral morph variation. Limonium myrianthum exhibits an unusual pollination pattern in which the small flowers with short corolla tubes make it possible for short-tongued insects to become effective pollinators. However, factors such as the position of stigma-anther within the flower, pollinator species and their preference further caused asymmetrical disassortative pollen transfer. Therefore, more factors should be considered when evaluating the effectiveness of short- and long-tongued insects in pollination service.

5.
Biomimetics (Basel) ; 9(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667246

RESUMO

Pollination is a crucial ecological process with far-reaching impacts on natural and agricultural systems. Approximately 85% of flowering plants depend on animal pollinators for successful reproduction. Over 75% of global food crops rely on pollinators, making them indispensable for sustaining human populations. Wind, water, insects, birds, bats, mammals, amphibians, and mollusks accomplish the pollination process. The design features of flowers and pollinators in angiosperms make the pollination process functionally effective and efficient. In this paper, we analyze the design aspects of the honeybee-enabled flower pollination process using the axiomatic design methodology. We tabulate functional requirements (FRs) of flower and honeybee components and map them onto nature-chosen design parameters (DPs). We apply the "independence axiom" of the axiomatic design methodology to identify couplings and to evaluate if the features of a flower and a honeybee form a good design (i.e., uncoupled design) or an underperforming design (i.e., coupled design). We also apply the axiomatic design methodology's "information axiom" to assess the pollination process's robustness and reliability. Through this exploration, we observed that the pollination process is not only a good design but also a robust design. This approach to assessing whether nature's processes are good or bad designs can be valuable for biomimicry studies. This approach can also inform design considerations for bio-inspired innovations such as microrobots.

6.
Insects ; 15(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667346

RESUMO

Bumblebees (Bombus terrestris) have strong environmental adaptability and high pollen transfer efficiency, making them well-suited pollinators of economic crops. However, bumblebee pollination is still not widely applied in northern China due to the lack of data on foraging behavior and pollination effects. We conducted a three-year experiment involving cherry tomatoes (Solanum lycopersicum L.) and pears (Pyrus spp.) treated with bumblebee pollination to evaluate the foraging behavior and pollination effects on these two crops. Results showed that B. terrestris had enhanced foraging activities as daytime temperatures rose from 18 °C to 26 °C, as indicated by the increased number of bees leaving the hive and returning bees carrying pollen in greenhouses in winter. There were two peaks in the foraging activity of bumblebees in pear orchards in early spring, which was closely related to the temperature change in the daytime. Undoubtedly, cherry tomatoes treated with B. terrestris had higher fruit setting rate, weight, seed number, and fruit yields compared to those with hormone 2,4-dichlorophenoxyacetic acid treatments, as well as a lower rate of deformed fruits. B. terrestris pollination can significantly increase the fruit setting rate and fruit yield of pears, compared with open pollination, and can fully achieve the effect of hand pollination. B. terrestris pollination can improve cultivation efficiency, increase yield, and produce more economic benefits. Moreover, it can also contribute to reducing hormone residues and ensure the safety of agricultural products. We recommend its application to cherry tomatoes in greenhouses in winter and potential application to pears in orchards in early spring in northern China. However, the risk to local bumblebee species of introducing commercially available bumblebees into orchards should be considered and evaluated in future research. This study provides both empirical support and a theoretical basis for the selection of bumblebees as pollinators in the production of economically important crops and the improvement of crop cultivation management in northern China.

7.
Insects ; 15(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667412

RESUMO

In understudied regions of the world, beekeeper records can provide valuable insights into changes in pollinator population trends. We conducted a questionnaire survey of 116 beekeepers in a mountainous area of Western Nepal, where the native honeybee Apis cerana cerana is kept as a managed bee. We complemented the survey with field data on insect-crop visitation, a household income survey, and an interview with a local lead beekeeper. In total, 76% of beekeepers reported declines in honeybees, while 86% and 78% reported declines in honey yield and number of beehives, respectively. Honey yield per hive fell by 50% between 2012 and 2022, whilst the number of occupied hives decreased by 44%. Beekeepers ranked climate change and declining flower abundance as the most important drivers of the decline. This raises concern for the future food and economic security of this region, where honey sales contribute to 16% of total household income, and where Apis cerana cerana plays a major role in crop pollination, contributing more than 50% of all flower visits to apple, cucumber, and pumpkin. To mitigate further declines, we promote native habitat and wildflower preservation, and using well-insulated log hives to buffer bees against the increasingly extreme temperature fluctuations.

8.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573061

RESUMO

Soybean (Glycine max (L.) Merr.) is an important agricultural crop around the world, and previous studies suggest that honey bees (Apis mellifera Linnaeus) can be a component for optimizing soybean production through pollination. Determining when bees are present in soybean fields is critical for assessing pollination activity and identifying periods when bees are absent so that bee-toxic pesticides may be applied. There are currently several methods for detecting pollinator activity, but these existing methods have substantial limitations, including the bias of pan trappings against large bees and the limited duration of observation possible using manual techniques. This study aimed to develop a new method for detecting honey bees in soybean fields using bioacoustics monitoring. Microphones were placed in soybean fields to record the audible wingbeats of foraging bees. Foraging activity was identified using the wingbeat frequency of honey bees (234 ±â€…14 Hz) through a combination of algorithmic and manual approaches. A total of 243 honey bees were detected over 10 days of recording in 4 soybean fields. Bee activity was significantly greater in blooming fields than in non-blooming fields. Temperature had no significant effect on bee activity, but bee activity differed significantly between soybean varieties, suggesting that soybean attractiveness to honey bees is heavily dependent on varietal characteristics. Refinement of bioacoustics methods, particularly through the incorporation of machine learning, could provide a practical tool for measuring the activity of honey bees and other flying insects in soybeans as well as other crops and ecosystems.


Assuntos
Himenópteros , Abelhas , Animais , Soja , Ecossistema , Produtos Agrícolas , Polinização
9.
New Phytol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561636

RESUMO

Across temperate forests, many tree species produce flowers before their leaves emerge. This flower-leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in biotically pollinated taxa. We quantified flower-leaf sequence variation in the American plums (Prunus, subg. Prunus sect. Prunocerasus), a clade of insect-pollinated trees, using herbaria specimens and Bayesian hierarchical modeling. We tested two common, but rarely interrogated hypotheses - that hysteranthy confers aridity tolerance and/or pollinator visibility - by modeling the associations between hysteranthy and related traits. To understand how these phenology-trait associations were sensitive to taxonomic scale and flower-leaf sequence classification, we then extended these analyses to all Prunus species in North America. Our findings across two taxonomic levels support the hypotheses that hysteranthy may help temporally partition hydraulic demand to reduce water stress and increase pollinator visibility - thereby reducing selective pressure on inflorescence size. Our results provide foundational insights into the evolution of flower-leaf sequences in the genus Prunus, with implications for understanding these patterns in biotically pollinated plants in general. Our approach suggests a path to advance these hypotheses to other clades, but teasing out drivers fully will require new experiments.

10.
J Exp Bot ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660967

RESUMO

Olive (Olea europaea L.) is an important Mediterranean tree species with a longstanding history of cultivation, boasting a diverse array of local cultivars. While traditional olive orchards are valued for their cultural and aesthetic significance, they often face economic sustainability challenges in the modern context. The success of both traditional and newly introduced cultivars (e.g. those obtained by crossbreeding) is hindered by self-incompatibility, a prevalent issue for this species that results in low fruit set when limited genetic diversity is present. Further, biological, environmental, and agronomic factors have been shown to interlink in shaping fertilization patterns, hence impacting on the final yield. Climatic conditions during pollination, such as excessive rainfall or high temperatures, can further exacerbate the problem. In this work, we provide an overview of the various complex and multifaceted factors that trigger the phenomenon of sub-optimal fruit set in olive trees. Through this work, we aim to provide a comprehensive understanding of the interplay among these factors, shedding light on potential mechanisms and pathways that contribute to the observed outcomes in the context of self-incompatibility of olive. This review aims to contribute to the development of sustainable olive production systems and the preservation of this vital component of Mediterranean culture.

11.
Naturwissenschaften ; 111(3): 26, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647655

RESUMO

In specialized plant-pollinator associations, partners may exhibit adaptive traits, which favor the maintenance of the interaction. The association between Calibrachoa elegans (Solanaceae) and its oligolectic bee pollinator, Hexantheda missionica (Colletidae), is mutualistic and forms a narrowly specialized pollination system. Flowers of C. elegans are pollinated exclusively by this bee species, and the bees restrict their pollen resources to this plant species. The pollen presentation schedules of C. elegans were evaluated at the population level to test the hypothesis that H. missionica females adjust their foraging behavior to the resource offering regime of C. elegans plants. For this, the number of new flowers and anthers opened per hour (as a proxy for pollen offering) was determined, and pollen advertisement was correlated with the frequency of flower visits during the day. Preferences of female bees for flowers of different stages were also investigated, and their efficiency as pollinators was evaluated. Pollen offering by C. elegans was found to be partitioned throughout the day through scattered flower openings. Females of H. missionica indeed adjusted their foraging activity to the most profitable periods of pollen availability. The females preferred new, pollen-rich flowers over old ones and gathered pollen and nectar selectively according to flower age. Such behaviors must optimize female bee foraging efficiency on flowers. Female bees set 93% of fruit after a single visit. These findings guarantee their importance as pollinators and the persistence of the specialized plant-pollinator association.

12.
New Phytol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634161

RESUMO

Shifts among functional pollinator groups are commonly regarded as sources of floral morphological diversity (disparity) through the formation of distinct pollination syndromes. While pollination syndromes may be used for predicting pollinators, their predictive accuracy remains debated, and they are rarely used to test whether floral disparity is indeed associated with pollinator shifts. We apply classification models trained and validated on 44 functional floral traits across 252 species with empirical pollinator observations and then use the validated models to predict pollinators for 159 species lacking observations. In addition, we employ multivariate statistics and phylogenetic comparative analyses to test whether pollinator shifts are the main source of floral disparity in Melastomataceae. We find strong support for four well-differentiated pollination syndromes ('buzz-bee', 'nectar-foraging vertebrate', 'food-body-foraging vertebrate', 'generalist'). While pollinator shifts add significantly to floral disparity, we find that the most species-rich 'buzz-bee' pollination syndrome is most disparate, indicating that high floral disparity may evolve without pollinator shifts. Also, relatively species-poor clades and geographic areas contributed substantially to total disparity. Finally, our results show that machine-learning approaches are a powerful tool for evaluating the predictive accuracy of the pollination syndrome concept as well as for predicting pollinators where observations are missing.

13.
Front Plant Sci ; 15: 1355680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606073

RESUMO

Infraspecific floral trait variations may appear in response to elevational differences in alpine plant species. There is enormous information on the selection of such morphs mediated by biotic and/or abiotic variables. Whether such differences contribute to differences in reproductive strategy and mating outcomes is rarely investigated. We investigated these aspects in two distinct elevational floral morphs (Red and Pink) of Rhododendron arboreum Sm. in Western Himalaya. The red morphs occupy the lower elevations while pink morphs the higher elevations. The two morphs differ in floral traits like phenology, dimension, display, quality of floral rewards, and pollinators that happen to influence interaction with available pollinator pool at each elevation. The pink morph exhibits entomophily, while the red ones show ornithophily. Although experimental pollinations established that both the morphs are self-compatible, selfing results in significantly lower fruit-set than either cross- or open-pollinations. The outcrossing rate in the red morph, as determined by using simple sequence repeat (SSR) markers, was higher (tm=0.82) than that in the pink morph (tm=0.76), with a tendency of the latter to be shifting towards mixed-mating strategy. However, the extent of biparental inbreeding was comparable among the two morphs. It is inferred that the differences in the mating outcomes among the morphs in the tree species are linked to those emerging from floral traits and the pollination by different functional groups of floral visitors.

14.
Ecol Evol ; 14(4): e11223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606342

RESUMO

The Platanthera Rich. (Orchidoideae) comprise a speciose genus of orchids primarily in the northern hemisphere, with up to 200 known species worldwide. Individual species are known to self-pollinate, but many rely on insect pollinators with characteristics such as floral color, timing of floral odor emissions, nectar rewards, and spur length associated with particular pollination syndromes. As with many orchids, some orchid-pollinator associations are likely highly co-evolved, but we also know that some Platanthera spp. are the result of hybridization events, which implies a lack of pollinator fidelity in some cases. Some Platanthera spp. occur in large numbers which, coupled with the numerous Platanthera-pollinator systems, make them accessible as study species and useful for co-evolutionary studies. Due to the likely effects of climate change and ongoing development on Platanthera spp. habitats, these orchids and their associated pollinators should be a focus of conservation attention and management. However, while there is a fairly substantial literature coverage of Platanthera-pollinator occurrence and interactions, there are still wide gaps in our understanding of the species involved in these systems. In this systematic review, we outline what is current knowledge and provide guidance on further research that will increase our understanding of orchid-insect co-evolutionary relationships. Our review covers 157 orchid species and about 233 pollinator species interacting with 30 Platanthera spp. We provide analyses on aspects of these interactions such as flower morphology, known insect partners of Platanthera species, insect-Platanthera specificity, pollination visitor timing (diurnal vs. nocturnal), floral rewards, and insect behavior affecting pollination outcomes (e.g., pollinia placement). A substantial number of Platanthera spp. and at least a few of their known pollinators are of official (IUCN) conservation concern - and many of their pollinators remain unassessed or even currently unknown - which adds to the urgency of further research on these co-evolved relationships.

15.
BMC Plant Biol ; 24(1): 294, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632532

RESUMO

BACKGROUND: Floral scents play a crucial role in attracting insect pollinators. Among the compounds attractive to pollinators is 1,4-dimethoxybenzene (1,4-DMB). It is a significant contributor to the scent profile of plants from various genera, including economically important Cucurbita species. Despite its importance, the biosynthetic pathway for the formation of 1,4-DMB was not elucidated so far. RESULTS: In this study we showed the catalysis of 1,4-DMB in the presence of 4-methoxyphenol (4-MP) by protein extract from Styrian oil pumpkin (Cucurbita pepo) flowers. Based on this finding, we identified a novel O-methyltransferase gene, Cp4MP-OMT, whose expression is highly upregulated in the volatile-producing tissue of pumpkin flowers when compared to vegetative tissues. OMT activity was verified by purified recombinant Cp4MP-OMT, illustrating its ability to catalyse the methylation of 4-MP to 1,4-DMB in the presence of cofactor SAM (S-(5'-adenosyl)-L-methionine). CONCLUSIONS: Cp4MP-OMT is a novel O-methyltransferase from C. pepo, responsible for the final step in the biosynthesis of the floral scent compound 1,4-DMB. Considering the significance of 1,4-DMB in attracting insects for pollination and in the further course fruit formation, enhanced understanding of its biosynthetic pathways holds great promise for both ecological insights and advancements in plant breeding initiatives.


Assuntos
Anisóis , Cucurbita , Metiltransferases , Metiltransferases/genética , Melhoramento Vegetal , Polinização , Plantas/metabolismo , Flores/metabolismo , Catálise
16.
Am J Bot ; : e16318, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654555

RESUMO

PREMISE: Numerous studies have found a positive association between dioecy and polyploidy; however, this association presents a theoretical conflict: While polyploids are predicted to benefit from self-reproduction for successful establishment, dioecious species cannot self-reproduce. We propose a theoretical framework to resolve this apparent conflict. We hypothesize that the inability of dioecious species to self-reproduce hinders their establishment as polyploids. We therefore expect that genera with many dioecious species have fewer polyploids, leading to a negative association between polyploidy and dioecy across genera. METHODS: We used three publicly available databases to determine ploidy and sexual systems for 131 genera and 546 species. We quantified (1) the relationship between the frequency of polyploid species and the frequency of dioecious species across genera, and (2) the proportion of polyploids with hermaphroditism and dioecy across species, adjusting for phylogenetic history. RESULTS: Across genera, we found a negative relationship between the proportion of polyploids and the proportion of dioecious species, a consistent trend across clades. Across all species, we found that sexual system (dioecious or not) was not associated with polyploidy. CONCLUSIONS: Polyploids are rare in genera in which the majority of species are dioecious, consistent with the theory that self-reproduction favors polyploid establishment. The low frequency of polyploidy among dioecious species indicates the association is not as widespread as previously suggested. Our findings are consistent with previous studies identifying a positive relationship between the two traits, but only if polyploidy promotes a transition to dioecy, and not the reverse.

17.
New Phytol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655668

RESUMO

Hybrid zones provide natural experimental settings to test hypotheses about species divergence. We concentrated on a hybrid swarm in which oil-collecting bees and flower-pecking birds act as pollinators of two Calceolaria species. We asked whether both pollinators contributed to flower divergence by differentially promoting prezygotic fitness at the phenotypic extremes that represent parentals. We studied pollinator-mediated selection on phenotypic traits critical in plant-pollinator mechanical interaction, namely plant height, reward-to-stigma distance, and flower shape. We utilised the quantity and quality of pollen deposited as fitness measures and distinguished between the contribution of the two pollinator types. Results showed uni- and bivariate disruptive selection for most traits through pollen grains deposited by both pollinators. Bird-mediated fitness favoured low plants with a long reward-to-stigma distance and a straight corolla, while bee-mediated fitness favoured tall plants with a short reward-to-stigma distance and curved corolla. In addition, stabilising selection at one end of the phenotypic range showed a bird-mediated reproductive asymmetry within the swarm. The disruptive pattern was countered, albeit weakly, by hybrids receiving higher-quality pollen on the stigmas. Results suggest that pollinator-mediated selection promotes divergence of integrated flower phenotypes mechanically adjusted either to bees or birds underscoring the importance of pollinator specialisation in diversification.

18.
Sci Rep ; 14(1): 8545, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609419

RESUMO

Traditionally, isolated and non-isolated boost converters are used for solar photovoltaic systems (SPV). These converters have limitations such as low voltage gain, less voltage ripples, temperature dependence, high voltage stress across the switches, and being bulky in size. Besides, the solar PV system also has non-linear characteristics between I-V and P-V, and the energy yield potential is affected by partial shading phenomena. Therefore, maximum power point tracking (MPPT) is being added to the SPV system to get the maximum output power under steady and dynamic climate conditions. Although the conventional MPPT has drawbacks such as less accuracy in predicting the MPP under partial shading conditions, low tracking speed, and more ripples, Hence, the research proposes a stackable single switch boost converter (SSBC) with a Cuckoo search MPPT controller for the SPV system. The efficiency of the proposed circuit topology has been compared with conventional boost converters with various MPPTs. Subsequently, the accuracy of tracking true MPPT by CSO is compared with that of PSO and FPNA. The results show, that the CMPPT with CBC has produced more ripples, whereas the BMPPT with SSBC produces ripple-free power under steady conditions. It is also observed that SSBC with BMPPT produces more power than SSBC with TMPPT. The efficiency of SSBC with BMPPT is better than other combinations. Finally, a prototype model has been developed and verified.

19.
Plants (Basel) ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611525

RESUMO

Apples exhibit S-RNase-mediated self-incompatibility and typically require cross-pollination in nature. 'Hanfu' is a cultivar that produces abundant fruit after self-pollination, although it also shows a high rate of seed abortion afterwards, which greatly reduces fruit quality. In this study, we investigated the ovule development process and the mechanism of ovule abortion in apples after self-pollination. Using a DIC microscope and biomicroscope, we found that the abortion of apple ovules occurs before embryo formation and results from the failure of sperm-egg fusion. Further, we used laser-assisted microdissection (LAM) cutting and sperm and egg cell sequencing at different periods after pollination to obtain the genes related to ovule abortion. The top 40 differentially expressed genes (DEGs) were further verified, and the results were consistent with switching the mechanism at the 5' end of the RNA transcript (SMART-seq). Through this study, we can preliminarily clarify the mechanism of ovule abortion in self-pollinated apple fruits and provide a gene reserve for further study and improvement of 'Hanfu' apple fruit quality.

20.
Plant Physiol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428987

RESUMO

In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNAi (RNA interference) plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...